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Abstract— In this paper, we address the problem of estimating the
parameters of the Half-Normal distribution using various
methods, including Maximum Likelihood Estimation, the Method
of Moments, and Bayesian estimation under different prior
distributions and loss functions. When closed-form Bayesian
estimators are unavailable, Lindley's approximation is applied.
Additionally, using Mathematica 12, a simulation study is
conducted to illustrate numerical examples and evaluate the
performance of the estimators.
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I. INTRODUCTION

The Half-Normal distribution HN (0, 82) is a probability
distribution often used in statistical modeling. Its applications
are diverse and can be found in various fields quality control,
Environmental science, biological sciences, Psychology and
social sciences and risk analysis assessment and management,
the half-normal distribution is centered around zero and
restricted to non-negative values, making it useful for data
modeling where negative values are not possible but where the
data still exhibit the characteristics of a normal distribution on
the positive side. can be used to model the distribution of
potential losses or risks associated with certain events or
decisions (Jingchao et al., (2021). then the random variable
follows from the following PDF:
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and the cumulative distribution function CDF:

F(x)=PX <x)=erf (;ﬁ)

II. LINDLEY’S APPROXIMATION FORMULA FOR
BAYESIAN ESTIMATORS

The basic idea in Lindley' s approach is to obtain Taylor
series expansion of the function involved in posterior moment,
assume that L(6) be the log-likelihood of a random sample
from X that has a PDF f(x,8). Suppose that p(6) is the
logarithm of the joint prior distribution of 6. Let 8 =
{6.1,6.2,.... ,0_m}, and u(0) be a function of @ that is
differentiable with respect to all its components.
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The basic idea in Lindley's approach is to obtain Taylor series

expansion of the function involved in posterior moment. His
formula is given as follows:
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Where:
i,jk,r=12,....m.
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and g; j is the (i, ) thelement in the multiplicative inverse of the
matrix {—Ll- j} This formula holds for large sample size n and
under some regularity conditions, and it should be evaluated at
the maximum likelihood estimates (MLE' s) of the involved
parameters in 8.

In our case m = 2, with 8; = 8 and 8, = 1 and hence we need
only the following derivatives of L(8).
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The empirical Fisher information is

%L %L

Fl= 90,2 00,00,
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It be should be noted here that the exact Fisher information
is taken as the matrix of the expected values of the above
matrix. The determinant of FI can be given by:
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The o;; terms of the above inverse of Fisher information can
be states as follows:
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II1. BAYESIAN ESTIMATION OF THE PARAMETERS OF THE
GAMMA DISTRIBUTION USING LINDLEY'S
APPROXIMATION

we will discuss the gamma distribution Lindley. In this
connection, we find that the PDF is of the form:
X
xa—le_ﬁ
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Consequently, we can obtain the following states:
The joint prior distribution:

We will take a~R(c;) and f~HN (c;)
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And a, 8 are independent
Then,
P(a,B) = PP,
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Therefor we can have the log likelihood of a random sample
of size n:

L= Z(—alog(a) —log (I'(@)) — log(x;)

j=1
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Which implies required derivatives of L:
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And we can have the logarithm of the joint prior distribution:
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Derivative of p:
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We want to find the MLE:
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Observed Fisher information matrix and its inverse FI
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Tq1 2x- 3)The Bayes Lindley Approximated Estimate of g(«a, f):
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uu, = «a
We have applied Bayesian techniques for estimating the
1) Basic Components of the approximated Lindley estimator parameters Of the Ha}f-Nprmal distribution the classical
of the g(a, B): methods (maximum likelihood, method of moments) and
A = ((uur-- +uu-‘r--)1’--) the Bayesian method, where we used Lindley's
b u JTrusun approximation when we can't get Bayesian estimator in
closed forms. We have further studied some characteristics
We obtain the following states: of these estimators.
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