Bayesian Estimation of the Parameters Half-Normal Distribution Using Lindley's Approximation

Eman Nouh
Department of Mathematic
Al-Zaytoonah University of Jordan
Amman, Jordan
EmanNouh55@yahoo.com

Waseem G. Alshanti
Department of Mathematics
Al Zaytoonah University of Jordan,
Amman 11733, Jordan.
w.alshanti@zuj.edu.jo

Abstract—In this paper, we address the problem of estimating the parameters of the Half-Normal distribution using various methods, including Maximum Likelihood Estimation, the Method of Moments, and Bayesian estimation under different prior distributions and loss functions. When closed-form Bayesian estimators are unavailable, Lindley's approximation is applied. Additionally, using Mathematica 12, a simulation study is conducted to illustrate numerical examples and evaluate the performance of the estimators.

Keywords— distribution, Fisher information, Lindley's approximation.

I. INTRODUCTION

The Half-Normal distribution HN $(0,\theta^2)$ is a probability distribution often used in statistical modeling. Its applications are diverse and can be found in various fields quality control, Environmental science, biological sciences, Psychology and social sciences and risk analysis assessment and management, the half-normal distribution is centered around zero and restricted to non-negative values, making it useful for data modeling where negative values are not possible but where the data still exhibit the characteristics of a normal distribution on the positive side. can be used to model the distribution of potential losses or risks associated with certain events or decisions (Jingchao et al., (2021). then the random variable follows from the following PDF:

$$f(x) = \sqrt{\frac{2}{\pi\theta^2}} e^{\frac{-x^2}{2\theta^2}}$$
 , $x \ge 0$

Rawand Salman
Department of Mathematics
Al-Zaytoonah University of Jordan
Amman, Jordan
Rawandsalman49@gmail.com

Alaa Nouh
Department of Mathematic
Al-Zaytoonah University of Jordan
Amman, Jordan
alaanouh198@gmail.com

and the cumulative distribution function CDF:

$$F(x) = P(X \le x) = erf\left(\frac{x}{\theta\sqrt{2}}\right)$$

II. LINDLEY'S APPROXIMATION FORMULA FOR BAYESIAN ESTIMATORS

The basic idea in Lindley's approach is to obtain Taylor series expansion of the function involved in posterior moment, assume that $L(\theta)$ be the log-likelihood of a random sample from X that has a PDF $f(x,\theta)$. Suppose that $\rho(\theta)$ is the logarithm of the joint prior distribution of θ . Let $\theta = \{\theta_1, \theta_2, \dots, \theta_m\}$, and $u(\theta)$ be a function of θ that is differentiable with respect to all its components.

$$E(u(\theta)|S) = \frac{\int u(\theta) e^{(\rho(\theta) + L(\theta))} d\theta}{\int e^{(\rho(\theta) + L(\theta))} d\theta}$$

The basic idea in Lindley's approach is to obtain Taylor series expansion of the function involved in posterior moment. His formula is given as follows:

$$E(u(\theta)|S) \approx \hat{g} + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} (u_{ij} + 2u_{i}\rho_{j})\sigma_{ij} + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{m} \sum_{r=1}^{m} (L_{ijk}\sigma_{ij}\sigma_{kr}u_{r}) + o\left(\frac{1}{n^{2}}\right)$$

Where:

$$i,j,k,r=1,2,\ldots m.$$

$$u_i = \frac{\partial u}{\partial \theta_i}, u_{ij} = \frac{\partial^2 u}{\partial \theta_i \partial \theta_j}, L_{ijk} = \frac{\partial^3 L}{\partial \theta_i \partial \theta_i \partial \theta_k}, \rho = \frac{\partial \rho}{\partial \theta_i}$$

and σ_{ij} is the $(i,j)^{th}$ element in the multiplicative inverse of the matrix $\{-L_{ij}\}$ This formula holds for large sample size n and under some regularity conditions, and it should be evaluated at the maximum likelihood estimates (MLE's) of the involved parameters in θ .

In our case m=2, with $\theta_1=\beta$ and $\theta_2=\lambda$ and hence we need only the following derivatives of $L(\theta)$.

$$\begin{split} L_{20} &= \frac{\partial^2 L}{\partial \theta_1^2}, L_{11} = \frac{\partial^2 L}{\partial \theta_1 \partial \theta_2}, L_{02} = \frac{\partial^2 L}{\partial \theta_2^2}, \\ L_{30} &= \frac{\partial^3 L}{\partial \theta_1^3}, L_{12} = \frac{\partial^3 L}{\partial \theta_1 \partial \theta_2^2}, L_{21} = \frac{\partial^3 L}{\partial \theta_1^2 \partial \theta_2}, L_{03} = \frac{\partial^3 L}{\partial \theta_2^3} \,. \end{split}$$

The empirical Fisher information is

$$\widehat{FI} = \begin{pmatrix} -\frac{\partial^2 L}{\partial \theta_1^2} & -\frac{\partial^2 L}{\partial \theta_1 \partial \theta_2} \\ -\frac{\partial^2 L}{\partial \theta_1 \partial \theta_2} & -\frac{\partial^2 L}{\partial \theta_2^2} \end{pmatrix}$$

It be should be noted here that the exact Fisher information is taken as the matrix of the expected values of the above matrix. The determinant of \widehat{FI} can be given by:

$$\Delta = \left(\frac{\partial^2 L}{\partial \theta_1^2} \frac{\partial^2 L}{\partial \theta_2^2} - \left(\frac{\partial^2 L}{\partial \theta_1 \partial \theta_2}\right)^2\right)$$

$$\widehat{FI}^2 = \frac{1}{4} \begin{pmatrix} -\frac{\partial^2 L}{\partial \theta_2} & \frac{\partial^2 L}{\partial \theta_1 \partial \theta_2} \\ \frac{\partial^2 L}{\partial \theta_1 \partial \theta_2} & -\frac{\partial^2 L}{\partial \theta_1^2} \end{pmatrix}$$

The σ_{ij} terms of the above inverse of Fisher information can be states as follows:

$$\begin{split} &\sigma_{11} = -\frac{1}{\Delta} \frac{\partial^2 L}{\partial \theta_2^2}, \\ &\sigma_{12} = \sigma_{21} = \frac{1}{\Delta} \frac{\partial^2 L}{\partial \theta_1 \partial \theta_2}, \\ &\sigma_{22} = -\frac{1}{\Delta} \frac{\partial^2 L}{\partial \theta_1^2}. \end{split}$$

III. BAYESIAN ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION USING LINDLEY'S APPROXIMATION

we will discuss the gamma distribution Lindley. In this connection, we find that the PDF is of the form:

$$f(x) = \frac{x^{\alpha - 1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}$$

Consequently, we can obtain the following states:

The joint prior distribution:

We will take $\alpha \sim R(c_1)$ and $\beta \sim HN(c_2)$

$$P_1(\alpha) = \frac{\alpha e^{-\frac{\alpha^2}{2c_1^2}}}{c_1^2}$$

$$P_2(\beta) = \frac{2c_2 e^{-\frac{c_2^2 \beta^2}{\pi}}}{\pi}$$

And α , β are independent

Then,

$$P(\alpha, \beta) = P_1 P_2$$

$$P(\alpha, \beta) = \frac{2\alpha c_2 e^{-\left(\frac{\alpha^2}{2c_1^2} + \frac{c_2^2 \sigma^2}{\pi}\right)}}{c_1^2 \pi}$$

Therefor we can have the log likelihood of a random sample of size n:

$$L = \sum_{j=1}^{n} \left(-\alpha \log(\sigma) - \log \left(\Gamma(\alpha) \right) - \log(x_{j}) + \alpha \log(x_{j}) - \frac{x_{j}}{\sigma} \right)$$

Which implies required derivatives of L:

$$L_{03} = \sum_{j=1}^{n} \left(-\frac{2\alpha}{\beta^3} + \frac{6x_j}{\beta^4} \right),$$

$$L_{30} = -n \, \psi(2, \alpha).$$

$$L_{12} = \frac{n}{\beta^2},$$

$$L_{21} = 0.$$

And we can have the logarithm of the joint prior distribution:

$$\rho = -\frac{\alpha^2}{2c_1^2} - \frac{c_2^2 \beta^2}{\pi} + \log(2) - 2\log(c_1) + \log(C_2) - \log(\pi) + \log(\alpha)$$

Derivative of ρ :

$$\rho_{10} = \frac{\partial \rho}{\partial \alpha} = \frac{\frac{e^{\frac{\alpha^2}{2c_1^2}}}{e_1^2} \frac{\alpha^2 e^{\frac{\alpha^2}{2c_1^2}}}{c_1^4}}{\frac{\alpha^2}{e_1^2}}}{\frac{\alpha^2}{c_1^2}}.$$

$$\rho_{01} = \frac{\partial \rho}{\partial \beta} = -\frac{2\beta c_2^2}{\pi} \ .$$

We want to find the MLE:

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^n (-\log(\beta) + \log \bigl(x_j\bigr) - \psi(\alpha) = 0$$

$$\frac{\partial L}{\partial \beta} = \sum_{j=1}^n (-\frac{\alpha}{\beta} + \frac{x_j}{\beta^2}) = 0$$

And,

$$\hat{\alpha} = \frac{\sum_{j=1}^{n} \log(x_j)}{n}$$

$$\hat{\beta} = \sqrt{\frac{\sum_{i=1}^{n} \log(x_i)^2}{n} - \frac{(\sum_{j=1}^{n} \log(x_j))^2}{n^2}}$$

Observed Fisher information matrix and its inverse \widehat{FI} evaluated at $\hat{\alpha}$ and $\hat{\beta}$:

$$\begin{split} &\sigma_{11} = -n \, \psi(1, \alpha) \,, \\ &\sigma_{22} = \sum_{j=1}^{n} \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3} \right) , \\ &\sigma_{12} = -\frac{n}{\beta} \,, \\ &\sigma_{21} = -\frac{n}{\beta} \,. \end{split}$$

And so, we obtain the following states:

$$\widehat{FI} = \begin{pmatrix} n \, \psi(1, \alpha) & \frac{n}{\beta} \\ \frac{n}{\beta} & -\sum_{j=1}^{n} \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3}\right) \end{pmatrix}$$

$$\Delta = \frac{-\left(n^2 + n\beta^2 \psi(1, \alpha) \sum_{j=1}^{n} \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3}\right)\right)}{\beta^2}$$

$$I\widehat{FI} = \begin{pmatrix} \tau_{11} & \tau_{12} \\ \tau_{21} & \tau_{22} \end{pmatrix}$$

Therefore,

$$\tau_{11} = \frac{\beta^2 \sum_{j=1}^{n} (\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3})}{n^2 + n\beta^2 \psi(1, \alpha) \sum_{j=1}^{n} (\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3})}$$

$$\tau_{12} = \frac{\beta}{n + \beta^2 \psi(1, \alpha) \sum_{j=1}^{n} (\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3})}$$

$$\tau_{21} = \frac{\beta}{n + \beta^2 \psi(1, \alpha) \sum_{j=1}^{n} (\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3})}$$

$$\tau_{22} = -\frac{\beta^2 \psi(1, \alpha)}{n + \beta^2 \psi(1, \alpha) \sum_{j=1}^{n} (\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3})}$$

IV. APPLIED LINDLEY APPROXIMATION FOR MEAN OF THE GAMMA DISTRIBUTION $g(\alpha, \beta) = \alpha \beta$

$$u_{12} = u_{21} = 1$$

 $u_{11} = u_{22} = 0$
 $uu_{1} = \beta$
 $uu_{2} = \alpha$

1) Basic Components of the approximated Lindley estimator of the $g(\alpha, \beta)$:

$$A_{ij} = \left(\left(uu\tau_{ii} + uu_j\tau_{ij} \right) \tau_{ii} \right)$$

We obtain the following states:

$$A_{11} = \frac{2\beta^5 \left(\sum_{j=1}^n \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3}\right)\right)^2}{\left(n^2 + n\beta^2 \psi(1,\alpha) \sum_{j=1}^n \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3}\right)\right)^2}$$

$$A_{12} = \frac{\beta^3 \left(\sum_{j=1}^n \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3} \right) \right) \left(n\alpha + \beta^2 \sum_{j=1}^n \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3} \right) \right)}{n^2 \left(n + \beta^2 \psi(1,\alpha) \sum_{j=1}^n \left(\frac{\alpha}{\beta^2} - \frac{2x_j}{\beta^3} \right) \right)^2}$$

$$\begin{split} A_{22} &= \frac{2\alpha\beta^4\psi(1,\alpha)^2}{\left(n+\beta^2\psi(1,\alpha)\sum_{j=1}^n\left(\frac{\alpha}{\beta^2}\frac{2x_j}{\beta^3}\right)\right)^2}\\ A_{21} &= \frac{\beta^4\psi(1,\alpha)(\beta\psi(1,\alpha)-1)}{\left(n+\beta^2\psi(1,\alpha)\sum_{j=1}^n\left(\frac{\alpha}{\beta^2}\frac{2x_j}{\beta^3}\right)\right)^2} \end{split}$$

And,

$$B_{ij} = (3uu_i\tau_{ii}\tau_{ij}) + uu_j(\tau_{ii}\tau_{jj} + 2\tau_{ij}^2)$$

$$B_{ij} = 0$$

And,

$$cc_{ij} = uu_i \tau_{ii} + uu_j \tau_{ji}$$
$$cc_{ij} = 0$$

2) We want to find the MLE of $g(\alpha, \beta)$:

$$\hat{g} = \frac{\left(\sum_{j=1}^{n} \log (x_j)\right) \sqrt{\frac{n \sum_{i=1}^{n} \log (x_i)^2}{n^2}}}{n}$$

3)The Bayes Lindley Approximated Estimate of $g(\alpha, \beta)$:

$$A_1 = (u_{10}\sigma_{11} + u_{01}\sigma_{12})$$

$$A_2 = (u_{01}\sigma_{22} + u_{10}\sigma_{21})$$

And,

$$B_1 = (l_{30}\sigma_{11} + l_{21}\sigma_{12} + l_{21}\sigma_{21} + l_{12}\sigma_{22})$$

$$B_2 = (l_{21}\sigma_{11} + l_{12}\sigma_{12} + l_{12}\sigma_{21} + l_{03}\sigma_{22})$$

And,

$$T_1 = (u_{20} + 2u_{10}\rho_{10})\sigma_{11}$$

$$T_2 = (u_{11} + 2u_{01}\rho_{10})\sigma_{21}$$

$$T_3 = (u_{11} + 2u_{10}\rho_{01})\sigma_{12}$$

$$T_4 = (u_{02} + 2u_{01}\rho_{01})\sigma_{22}$$

Therefore,

$$g_{BL} = \hat{g} + \frac{1}{2}(T_1 + T_2 + T_3 + T_4) + \frac{1}{2}(A_1B_1 + A_2B_2)$$

V. CONCLUSIONS

We have applied Bayesian techniques for estimating the parameters of the Half-Normal distribution the classical methods (maximum likelihood, method of moments) and the Bayesian method, where we used Lindley's approximation when we can't get Bayesian estimator in closed forms. We have further studied some characteristics of these estimators.

REFERENCES

Adegoke, T. M., Nasiri, P., Yahya, W. B., Adegoke, G. K., Afolayan,
 R. B., &Yahaya, A. M. "Bayesian estimation of Kumaraswamy

- distribution under different loss functions," Annals of Statistical Theory and Applications, 2019, 2, 90-102.
- [2] Adnan, H., J. Hassan, N., and B. Jaafar, A. "Bayes estimators of Weibull-Lindley Rayleigh distribution parameters using Lindley's". Turkish Journal of Computer and Mathematics Education, 2021,12(12), 508-517.
- [3] Abu Hammad, M., Al-Zoubi, H., and Al Abdallah, A. "Bayes Estimation of the Parameters of the Kumaraswamy Probability Distribution". International Conference on Information Technology (ICIT),2023, (pp. 387 390).
- [4] Awad, Adnan, Ma'mon Abu Hammad, "Distribution of Shannon Statistic from Normal sample," published in International Journal of statistics. vol. LXV, n.3, 2007,pp.259-279.
- [5] Ma'mon Abu Hammad, "Conformable Fractional Martingales and Some Convergence Theorems Mathematics," 2022, 10(1), 6.
- [6] Amer Dababneh, Amjed Zraiqat, Abdulkarim Farah, Hassan Al-Zoubi, Ma'Mon Abu Hammad "Numerical methods for finding periodic solutions of ordinary differential equations with strong nonlinearity" J. Math. Comput. Sci., 2021,6910-6922,11(6).
- [7] Abdul-Majid Wazwaz, Ma^{*}mon Abu Hammad, Ali O. Al-Ghamdi, Mansoor Alshehri and Samir El-Tantawy. "New (3+1)-Dimensional Kadomtsev-Petviashvili-Sawada— Kotera-Ramani Equation: Multiple-Soliton and Lump Solutions," Mathematics, 2023, 13(15), 3395.
- [8] Ali Abrikah, S., Farraj, G., and Abu Hammad, M. (2023). Bayes Estimators of the Log-Normal Distribution Parameters Using Lindley's Approximation. International Conference on Information Technology (ICIT) (pp. 149 - 152)

- [9] .Ma'mon Abu Hammad, , Sharifa Alsharif, R Khalil and Alaa Shmasnah ,"Fractional Bessel differential equation and fractional Bessel functions," ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 47 (2022), 521-531.
- [10] Ma'mon Abu Hammad, Mohammed Al Horani, Alaa Shmasenh and Roshdi Khalil "Reduction of order of fractional differential equations" Journal of Mathematical and Computational Science, 2018, 8 (6), 683-688.
- [11] Ma'mon Abu Hammad, A. AWAD, R. KHALIL, E. ALDABBAS "FRACTIONAL DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS OF RANDOM VARIABLES GENERATED USING FDE", J. Math. Comput. Sci. 10 (2020), No. 3, 522-534.
 - [12] Ma'mon Abu Hammad and R Khaliland. "Systems of linear fractional differential equations," Asian Journal of Mathematics and Computer Research, 12(2016), 2,120-126.
 - [13] Ma'mon Abu Hammad, and R. Khalil. "Systems of linear fractional differential equations." Asian Journal of Mathematics and Computer Research 12.(2) 2016, 120-126.
 - [14] Lindley, D. (1980). "Approximate bayesian methods". Trabajos Estadist 31, pp. 223-237.