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Definition of GeoAl
(Geospatial Artificial Intelligence)

It is the integration of artificial intelligence (Al) — such
as machine learning (ML), deep learning (DL) and data
mining — with geospatial data and technologies — such
as geographic information systems (GIS), remote
sensing (RS), and spatial statistics; in order to
analyze, model, and interpret geospatial phenomena.
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Gao, Song, Geospatial artificial intelligence (GeoAl),
Vol. 10. Oxford University Press New York, 2021. DOI:
10.1093/0B0O/9780199874002-0228.
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Wenwen Li and Chia-Yu Hsu. “GeoAl for large-scale image
analysis and machine vision: recent progress of artificial
intelligence in geography”. In: ISPRS International Journal of
Geo-Information 11.7 (2022), p. 385. DOI:
10.3390/ijgi11070385.
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Bala Bhavya Kausika et al. “GeoAl for detection of solar
photovoltaic installations in the Netherlands”. In: Energy and

Al 6 (2021), p. 100111. DOI: 10.1016/j.egyai. 2021.100111.
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(Geographic Information Systems - GIS)
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Yongjun Xu et al. “Artificial intelligence: A powerful paradigm for
scientific research”. In: The Innovation 2.4 (2021). DOI:

10.1016/j.xinn.2021.100179.
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A set of techniques for approximating a function that maps an

iInput space to an output space, while extracting meaningful,

non-redundant information from data samples.

KC Santosh, Nibaran Das, and Swarnendu Ghosh. Deep learning

models for medical imaging. Academic Press, 2021



Deep Learning (DL) (il alail

O () B LEY) st g lilull Baaxta LS V‘S’J clandall Baaeia il PRENIY Gﬁf\ PL.\M (e &
ESJAJH 1A Al el oyl back-propagation @H\ LY 4 PRENY Caranl) ?Lﬂ‘
.epoch «u )i 3 )50 JS 8 il o2 s 3ale) Jal (e

A branch of Machine Learning using multi-layer architectures to learn multiple
representations of data. It is noted that deep learning uses the back-propagation
technique to adjust the internal parameters of the model in order to recalculate

these representations at each epoch.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553

(2015), pp. 436-444. DOI: 10.1038/nature14539.






 Terence R Smith, 1984, “Artificial intelligence and its applicability to
geographical problem solving”. In: The Professional Geographer 36.2

(1984), pp. 147-158. DOI: 10. 1111/j.0033-0124.1984.00147 .x

* John E Estes, Charlene Sailer, and Larry R Tinney, 1986,
“Applications of artificial intelligence techniques to remote sensing”.
In: The Professional Geographer 38.2 (1986), pp. 133-141. DOI: 10.
1111/j.0033-0124.1986.00133.x



Helen Couclelis, 1986, “Artificial intelligence in geography:
Conjectures on the shape of things to come”. In: The professional
geographer 38.1 (1986), pp. 1-11. DOI: 10. 1111/j.0033-
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Stan Openshaw and Christine Openshaw, 1997, Artificial intelligence
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Home / About The ESDS Program ESDIS Project / EOSDIS

EOSDIS

NASA's Earth Observation System Data and Information System (EOSDIS)
comprises elements including Distributed Active Archive Centers, Science
Investigator-led Processing Systems, and web infrastructure.

NASA's Earth Observing System Data and Information System (EOSDIS) is a key core capability in the Earth Science Data Systems
(ESDS) Program. It provides end-to-end capabilities for managing NASA Earth science data from various sources — satellites,
aircraft, field measurements, and various other programs. For the EOS satellite missions, EOSDIS provides capabilities for
command and control, scheduling, data capture and initial (level 0) processing. These capabilities, constituting the EOSDIS Mission
Operations, are managed by NASA's Earth Science Mission Operations (ESMQ) Project. NASA network capabilities transport the

data to the science operations facilities.
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GLOSSARY AND ACRONYMS

MULTIMEDIA

In 2008, the Landsat products stored in the USGS EROS archive became available for download
at no cost to users. The applications described below allow access to the Landsat products from
the USGS archive. Each application provides unique capabilities that may be useful to user
preferences, as either single file or large quantity (bulk) downloads.

USGS EarthExplorer
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EarthExplorer's graphical interface
lets you define areas of interest by
using the map to create points or
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Landsat in the Cloud
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operational products can be accessed
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SeaBASS

Home About SeaBASS Get Data Contribute Data Wiki Lists Login

Search wiki articles. ..

Welcome to the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), the publicly shared archive of in situ oceanographic and atmospheric data maintained by the NASA Ocean Biclogy Processing Group (OBPG). For information on how to search for data, please
refer to the "Get Data" menu options. For information about preparing files for submission to SeaBASS, refer to "Contribute Data.”

Data Shortcuts Lists News
File Search Investigators ) )
Server Update Security Alert for Data Submitters Ll
Validation Search Experiments
Time Series Tool Cruises If uploading data for the first time since August 1, 2025
SST Search Fields . YO%J |jnay see a one-time security warning about the server's host key
+ This is expected due to recent server updates
NOMAD Dataset Submission Special Requirements « You may safely select Update and proceed
If concerned:
Recent Data Updates

« Follow standard security protocols

+ Contact the SeaBASS team with questions
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date time lat.lon,Reldz, 3ZA AOQT.cloud win... NeW metadata |d headers 2024-02-13
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Access to data

Copernicus Data Access At the heart of Copernicus is a constellation of satellites — the Sentinels — that make a huge number of daily observations of the
Earth ecosystem. The technological prowess of Copernicus, especially in terms of availability and accessibility, has made
Copernicus the largest space data provider in the world.

Copernicus services catalogue The following diagram illustrates the conceptual elements of Copernicus as it relates to data access.
Pri
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(Data Processing and

Preprocessing)



These images show the results of the TetraPLEX satellite image
preprocessing precision correction performance test. The unusable
satellite image with confirmed quality issues (left) and the image
restored through precision correction processing with TetraPLEX in
space (right). (Source: TelePIX)

EX : Businesskorea (https://www.businesskorea.co.kr)
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ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 75-88 ; 3 n

PHOTOGRAMMETRY
AND REMOTE SENSING

Contents lists available at ScienceDirect

(Noise Reduction)

S 330k aladinl (Ko
Lorena A. Santos , Karine R. Ferreira, Gilberto Camara, Michelle C.A. Picoli, Rolf E. Simoes ”
Earth Observation General-Coordination, National Institute for Space Research, INPE, Brazil . “  ar . L -

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locatefisprsjprs

Quality control and class noise reduction of satellite image time series

ARTICLEINFO ABSTRACT

v
Keywords: The extensive amount of Earth observation satellite images available brings opportunities and challenges for land { ; g SR l Q ¢ b‘)‘ﬁ‘aj‘ p}
Self-organizing map mapping in global and regional scales. These large datasets have motivated the use of satellite image time series Lol C

Class nolse reduction analysis coupled with machine learning techniques to produce land use and cover class maps. To be successful,
Bayesian inference

Satellite image time series these methods need good quality training samples, which are the most important factor for determining the .
Land use and cover classification accuracy of the results. For this reason, training samples need methods for quality control of class noise. In this bR \ - ‘ S‘ . ‘ ™ .~S ‘
paper, we propose a method to assess and improve the quality of satellite image time series training data. The ‘.; (G 9
method uses self-organizing maps (SOM) to produce clusters of time series and Bayesian inference to assess intra- -
cluster and inter-cluster similarity. Consistent samples of a class will be part of a neighborhood of clusters in the
SOM map. Noisy samples will appear as outliers in the SOM. Using Bayesian inference in the SOM neighbor- . i
hoods, we can infer which samples are noisy. To illustrate the methods, we present a case study in a large training m ‘ ': ~ “ ‘ Q s\y ‘
set of land use and cover classes in the Cerrado biome, Brazil. The results prove that the method is efficient to LI J ‘)‘M
reduce class noise and to assess the spatio-temporal variation of satellite image time series training samples.
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(Land Use and Land Cover Classification)
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(ANN RF) Landast8 satellite 2016
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ANN_RF Model

B =uiitup Area
Agricultural Area
Bare Land
Vegetation
Land Area
B Focky Ares & Mountains
HighLand

E— ]
0 400 800 1200 1600 A

72000 1172000

T2

b '-:{» e
P L e W )
o %)

ANN_RF Model

[ Bare Land

Rocky Area & Mountains
Builtup Area

Vegetation

Agricultural Area

Land Area

HighLand

0 400 800 1200 1600 A

V %



<) pail) aliag) 2.2
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(Object Detection)
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(Data Fusion and Integration)
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(Cross-Sensor Analysis)
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International Journal of Applied Earth Observations and Geoinformation 112 (2022) 102818
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International Journal of Applied Earth
Observations and Geoinformation
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ELSEVIER journal homepage: www._elsevier.com/flocatefjag

Fusion of optical and SAR images based on deep learning to reconstruct
vegetation NDVI time series in cloud-prone regions

Jingbo Li b.c Changchun Li“, Weimeng Xu b4 Haikuan Feng ® Fa Zhao", Huiling Long b
Yang Meng ", Weinan Chen “, Hao Yang ", Guijun Yang *""

* Key Laboratory of Quantibative Ry S ing ire Agriculiire of Ministry of Agricultire and Rural Affairs, Information Technology Research Center, Beijing Acadenty of
Agriculture and Forestry Sciences, Beijing 100097, China

& National Engineering Research Center for Information Technology in Agricultere, Beijfing 100097, China

© School of Surveying and Mapping Land Information Engineering, Henan Polytechnic University, Jigozwo 4540040, China

® School of Geological Engineering and Surveying and Mapping, Chang’an University, Xi'an 710054, China

ARTICLE INFO ABSTRACT

Keywords: The normalized difference vegetation index (NDWVT) is crucial to many sustainable agricultural practices such as
Vigetatioon Momitocing vegetation monitoring and health evaluation. However, optical remote sensing data often suffer from a large
Tie sevias amount of missing information due to sensor failures and harsh atmospheric conditions. The synthetic aperture
Deep leaming radar (SAR) offers a new approach to filling in missing optical data based on its excessive revisit density and its
Transformer N . B . R . L. . .
SAR data potential to image without interference from clouds and rain. Due to the difference in imaging mechanisms
Optical data between SAR and optical sensors, it is very difficult to fuse the data. This paper developed an advanced deep
NDVI learning Spatio-temporal fusion method, i.e., Transformer Temporal-spatial Model (TTSM), to synergize the SAR
and optical time-series to reconstruct vegetation NDVI time series in cloudy regions. The proposed multi-head
attention and end-to-end architecture achieved satisfactory accuracy (R” greater than 0.88), outperforming
the existing deep learning solutions. Extensive experiments were carried out to evaluate the TTSM method on
large-scale areas (the spatial scale of megapixels) in northeast China with the main vegetation types of crops and
forests. The R?, SSIM, RMSE, NRMSE, and MAE of our prediction results were 0.88, 0.80, 0.06, 0.16, and 0.05,
respectively. The influence of training sample size was investigated through a transfer learning study, and the
result indicated that the model had good generalizability. Owerall, our proposed method can fill in the gap of
optical data at an extensive regional scope over the vegetated area using SAR.




1. Introduction

Due to the limitations in physical conditions, technical requirements,
and financial support, there are no satellite image sensors with exquisite
spatial resolution and great temporal frequency (Wang and Wang 2020).
Meanwhile, the lack of high-quality optical satellite data impedes the
extensive, accurate, and spatially specified surveillance of vegetation
over giant areas (Zhao et al. 2020). Fortunately, with the advent of
denser, better-performing satellites, the resolution and repeated visit
period of optical images have been improved considerably in the pre-
vious decades (Drusch et al. 2012; Li et al. 2021¢). Meanwhile, NDVI
(Myneni and Williams 1994), one universal indicator of vegetation
condition, has been comprehensively applied to vegetation phenology

extraction (Pastor-Guzman et al. 2018), vegetation growth monitoring
(Chu et al. 2018), ete. However, due to sensor failures and harsh at-
mospheric conditions, optical remote sensing data usually have a large
amount of missing information, thus leading to low availability and
further hindering subsequent applications (Li et al. 2021¢; Shen et al.
2015).

Although solving the optical data deficit problem has become a
research hotspot in the latest decades, many studies have only explained
the problem (A et al. 2010; Wang and Atkinson 2018; Zhao et al. 2018).
The common strategy is to resample statistics at a meticulous resolution
to healthy statistics at an uncareful resolution, but the authenticity of the
techniques depends on the percentage of cloud-clear images. Also, the
precondition is tough to obtain in practice, especially for the areas

* Corresponding authors at: Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology
Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (G. Yang).
E-mail addresses: yangh@nercita.org.cn (H. Yang), yanggj@nercita.org.cn (G. Yang).

https://doi.org/10.1016/].jag. 2022. 102818

Received 20 February 2022; Received in revised form 1 May 2022; Accepted 9 May 2022

Available online 21 June 2022

1569-8432/0 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Climate and Weather Forecasting)
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(Disaster Prediction and Monitoring)
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‘Al was used to identify damage in Adiyaman, Turkey, after the 2023 earthquake. ILYAS AKENGIN—AFP /
https://time.com/7171445/ai-natural-disaster-cities/
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Review

Deep artificial intelligence applications for natural disaster management
systems: A methodological review

Akhyar Akhyar®, Mohd Asyraf Zulkifley *:°, Jaesung Lee ", Taekyung Song ", Jaeho Han ",
Chanhee Cho"”, Seunghyun Hyun ", Youngdoo Son®, Byung-Woo Hong "

2 Deporoment of Electrical, Electronic and Systems Engineering, Universiti Kebongseon Molaysio, 43600 Bangt, Selangor, Moloysio
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ARTICLE INFO ABSTRACT

Keywords: Deep leaming techniques through semantic segmentation networks have been widely used for natural disaster
Artificial intelligence analysis and response. The underlying base of these implementations relies on convolutional neural networks
Deep learning {CNMs) that can accurately and precisely identify and locate the respective areas of interest within satellite
gs;.f;l:;x::cum] network imagery or other forms of remote sensing data, thereby assisting in disaster evaluation, rescue planning, and
Semantic pegmentation restoration endeavours. Most CNMN-based deep-learning models encounter challenges related to the loss of spatial
Forest fire information and insufficient feature representation. This issue can be attributed to their suboptimal design of the
Flood layers that capture multiscale-context information and their failure o include optimal semantic information
Earthquake during the pooling procedures. In the early layvers of CHNNs, the network encodes elementary semantic repre-
sentations, such as edges and corners, whereas, as the network progresses toward the later layers, it encodes
more intricate semantic characteristics, such as complicated geometric shapes. In theory, it is advantageous for a
segmentation network o extract features from several levels of semantic representation. This is because seg-
mentation networks generally yield improved results when both simple and intricate feature maps are employed
together. This study comprehensively reviews current developments in deep learning methodologies employed to
segment remote sensing images associated with natural disasters. Several popular deep learning models, such as
SegMet U-Met, FCNs, FCDenseMNet, PSPNet, HRNet, and DeepLab, have exhibited notable achievements in various
applications, including forest fire delineation, flood mapping, and earthquake damage assessment. These models
demonstrate a high level of efficacy in distinguishing between different land cover types, detecting infrastructure
that has been compromised or damaged, and identifying regions that are fire-susceptible to further dangers.




1. Introduction

A natural disaster is any calamitous occurrence generated by the
effects of natural phenomena rather than human-driven activities that
produce significant loss of human life and destruction of the natural
environment, private properties, and public infrastructures (FPrasad
et al., 2017). A natural disaster may be caused by changes in weather
and climate events, earthquakes, landslides, and other anomalies on the
Earth’s surface or within the planet itself. Truthfully, no spot-on Earth is
safe from a natural disaster; however, certain types of disasters are often
limited to or occur more frequently in specific geographic regions.

Natural disasters, such as forest fires, earthquakes, and floods, have
devastating and extensive adverse effects on human populations and the
natural environment (Wallemacq et al., 2018).

The natural disaster of forest fires, if it is not controlled, can produce
blazes over 1.8 m in height that can cause devastating damage to the
ecosystems (Kane, 2023). Forest fires are generally triggered by a
combination of factors, including wind speed, terrain conditions, and
moisture level in the surrounding plants. They have the potential to
rapidly intensify, emitting combustible gases and undergoing pyrolysis,
burning the plants, and emitting unhealthy smoke, which can have
adverse effects on air quality and ecosystems (Dhall et al., 2020).

Abbreviations: CNNs, Convolutional Neural Networks; FCNs, Fully Convolutional Networks; HRNet, High Resolution Network; DL, Deep Learning; NIR, Near
Infrared Region; SWIR, Short-wave infrared; OLI, Operational Land Imager; TIR, Thermal Infrared Sensor.
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ARTICLE INFO ABSTRACT

Keywords: Artificial intelligence (AI) holds significant promise for advancing natural disaster management
Artificial intelligence through the use of predictive models that analyze extensive datasets, identify patterns, and
”a‘“rf’l d—“‘m forecast potential disasters. These models facilitate proactive measures such as early warning
Eﬁ;mﬁ:izlrl:w systems (EWSs), evacuation planning, and resource allocation, addressing the substantial chal-
Taxonomy lenges associated with natural disasters. This study offers a comprehensive exploration of trust-
Trustworthy worthy Al applications in natural disasters, encompassing disaster management, risk assessment,
and disaster prediction. This research is underpinned by an extensive review of reputable sources,
including Science Direct (SD), Scopus, IEEE Xplore (IEEE), and Web of Science (WoS). Three
queries were formulated to retrieve 981 papers from the earliest documented scientific produc-
tion until February 2024. After meticulous screening, deduplication, and application of the in-
clusion and exclusion criteria, 108 studies were included in the quantitative synthesis. This study
provides a specific taxonomy of Al applications in natural disasters and explores the motivations,
challenges, recommendations, and limitations of recent advancements. It also offers an overview
of recent techniques and developments in disaster management using explainable artificial in-
telligence (XAI), data fusion, data mining, machine learning (ML), deep learning (DL), fuzzy logic,
and multicriteria decision-making (MCDM). This systematic contribution addresses seven open
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Abstract: Integrating Artificial Intelligence (Al) techniques with remote sensing holds great potential
for revolutionizing data analysis and applications in many domains of Earth sciences. This review
paper synthesizes the existing literature on Al applications in remote sensing, consolidating and
analyzing Al methodologies, outcomes, and limitations. The primary objectives are to identify
research gaps, assess the effectiveness of Al approaches in practice, and highlight emerging trends and
challenges. We explore diverse applications of Al in remote sensing, including image classification,
land cover mapping, object detection, change detection, hyperspectral and radar data analysis, and
data fusion. We present an overview of the remote sensing technologies, methods employed, and
relevant use cases. We further explore challenges associated with practical Al in remote sensing,
such as data quality and availability, model uncertainty and interpretability, and integration with
domain expertise as well as potential solutions, advancements, and future directions. We provide
a comprehensive overview for researchers, practitioners, and decision makers, informing future
research and applications at the exciting intersection of Al and remote sensing.

Keywords: Artificial Intelligence; remote sensing technology; deep learning; LIDAR; image classification;
object detection; change detection; data analysis
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1. Introduction

Remote sensing is a technology that enables data collection without direct contact
with the subject, utilizing sensors to measure or detect various types of energy, such as
electromagnetic radiation and acoustic signals, emitted, reflected, or scattered by the object
under investigation [1]. Multiple sensors and platforms have been developed for remote
sensing. As sensors continue to advance, the amount of remote sensing data generated
has reached staggering proportions. For example, according to NASA’s Earth Science
Data Systems (ESDS), the Earthdata Cloud held more than 59 petabytes (PB) of data as
of September 2021. ESDS estimates that this amount is expected to increase to more than
148 PB in 2023, 205 PB in 2024, and 250 PB in 2025 [2]. To effectively manage this massive
volume of remote sensing data, preprocessing techniques, including noise reduction and
sensor calibration using a variety of algorithms and data compression algorithms, are
utilized to minimize the data size, while computer systems with ample memory and
parallel processing capabilities facilitate the handling of these large datasets [3].

With the increasing data quality and volume from remote sensing platforms, there
is a need for computational platforms and effective tools to handle and extract valuable
information from remote sensing datasets. Al tools can assist in managing large volumes of
observations, modeling, analysis, and environmental forecasting, and have proven effective
for key tasks such as noise reduction [4], data fusion [5], object detection [6,7], and many
other important applications. As Al technologies develop, acquiring and storing remote
sensing data becomes increasingly important. The process of obtaining this large volume
of data entails using various sensors on different platforms, such as Unmanned Aerial

Remote Sens. 2023, 15, 4112. https:/ /doi.org/10.3390/1515164112
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NASA Earth Observing System Data and Information System (EOSDIS)
USGS Earth Explorer

Copernicus Open Access Hub (European Space Agency - ESA)

Google Earth Engine

National Oceanic and Atmospheric Administration (NOAA)

Japan Aerospace Exploration Agency (JAXA)

China Earth Observation Satellite Data Service Platform and CRESDA

Indian Space Research Organization (ISRO)
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