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The Energy Waste Problem in Manufacturing

Energy Costs in Manufacturing

»  Energy accounts for “25% of manufacturing costs

»  Small factories lack tools to track and optimize usage

»  Traditional solutions are expensive and ineffective

The Need for Better Prediction

»  Peak demand charges send costs through the roof

Looking at yesterday's numbers doesn't help plan for tomorrow

» Al can spot patterns humans miss in energy usage
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SmartEnergy Al: System Overview

Hybrid Deep Learning System Key Capabilities
»  LSTM neural networks for temporal pattern recognition »  Predicts energy demand up to 24 hours ahead
»  PSO optimization for hyperparameter tuning »  ldentifies wasteful consumption patterns
»  GA for feature selection from 23 variables »  Recommends optimized equipment schedules
»  Trained on 2.1M 15-minute readings from 24 factories ’

Reduces computing needs by 65% through smart sampling
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SmartEnergy Al: Methodology

LSTM Neural
Network Model Evaluation
Building a neural Using PSO to Training the model Assessing model
network for optimize model with selected performance on test
sequence learning hyperparameters features data
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Methodology Overview

Hybrid Deep Learning Approach

»  Energy prediction as sequence learning problem

LSTM networks capture temporal patterns in energy usage

PSO optimizes hyperparameters more efficiently than grid search

»  GA selects optimal features from 23 candidate variables

1 2 3
Data Collection Model Prediction &
Optimization Analysis

Model Components

LSTM Architecture: 3 layers (128, 64, 32 neurons)
PSO Parameters: 20 particles, 50 iterations, w=0.7
GA Selection: 7 optimal features from 23 candidates

Training Process: 70% train, 15% validation, 15% test
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Data Collection and Sampling

UCI Steel Industry Dataset Stratified Random Sampling

Stratification

Detailed industrial energy records from 24 manufacturing plants Dataset divided by facility type, operational shifts, and seasonal

periods

»  Collection period: 3 years (2020-2023)
Random Selection
*  Each record: 15-minute snapshot with energy usage, environmental

o L
data, and operational details 35% of records randomly selected from each stratum using fixed

seed (seed=42)

*  Facilities range from 50-500 employees across metal fabrication, food

processing, plastics, and car parts Validation

Statistical distributions verified using Kolmogorov-Smirnov tests (p >
0.05)
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= Steel Industry Energy Consumption

Donated on 8/13/2023

The data is collected from a smart small-scale steel industry in South Korea.

Dataset Characteristics Subject Area Associated Tasks
Multivariate Physics and Chemistry Regression
Feature Type # Instances # Features
Real, Categorical 35040 9
Dataset Information ~

Additional Information
The information gathered is from the DAEWOO Steel Co. Ltd in Gwangyang, South Korea. It produces several types of coils,
steel plates, and iron plates. The information on electricity consumption is held in a cloud-based system. The information on

energy consumption of the industry is stored on the website of the Korea Electric Power Corporation (pccs.kepco.go.kr), and the
perspectives on daily, monthly, and annual data are calculated and shown.
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Model Architecture

{2}  LSTM Neural Network

» 3 stacked layers: 128, 64, 32 neurons

96 timesteps input sequence (24 hours)

» Predicts next 96 time slots ahead

Processes 15 input variables across time
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(4) PSO Optimization

»  Optimizes 5 key hyperparameters

Converged in 35 iterations vs 200+ grid search

Reduced validation MAPE from 7.2% to 4.1%
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GA Feature Selection

Selects from 23 candidate features
Identifies 7 optimal features

Captures 96% of predictive power

Reduces dimensionality while maintaining
accuracy

Hybrid Integration

GA Selection PSO Optimization

LSTM

Training



Experimental Setup

Training Process

Model learns by comparing predictions to actual consumption

Adjusts millions of internal parameters via backpropagation

»  Optimizes to minimize prediction error on validation set

70% 15% 15%

Training Validation Testing

2020-2021 Early 2022 Late 2022-2023

Model Parameters

Learning Rate Batch Size
0.001 64
Dropout Rate Epochs

0.2 100

Data Preprocessing

@ Missing Values

Handled using forward-fill interpolation

‘ Normalization

Min-max scaling to [0,1] range

@ Sequence Generation

Sliding windows for time series input

Input Features

»  Total power consumption (historical)
Outdoor temperature and environmental data
Production volume and equipment status

»  Temporal features: day of week, hour of day

Holiday indicators and special events



Results and Performance Comparison

Key Performance Metrics Model Benchmarking

95.7% 92.3% Simple Moving Average 68.2%

24-hour Forecast Accuracy

Week-ahead Forecast Accuracy ARIMA 78.4%
. (]

90 Random Forest 86.1%
>, 60 Standard RNN 88.7%

: {: Baseline LSTM 89.4%

& N 5 GA-optimized LSTM 93.1%

s Our PSO-LSTM Model 95.7%

Key Finding Efficiency Gain

PSO tune-up boosted LSTM performance by 8.2% over standard set
tne-up P b ooV up PSO found optimal configurations in 35 iterations vs 200+ grid search




Key Findings and Insights

8 HVAC Optimization Windows

Model identified specific temperature ranges where pre-cooling before

peak hours reduces overall energy consumption by up to 18%

Counterintuitive: Cooling earlier saves more energy

@ Optimal Shift Timing

Starting production shifts 15 minutes earlier on certain days reduces peak

demand charges by 27% without affecting output

Small timing adjustments yield significant savings

< Equipment Synergy

Certain equipment combinations operate 23% more efficiently when run

together versus separately, regardless of production needs

Non-obvious operational patterns discovered

a7 Energy Anomaly Detection

Model flags equipment malfunctions up to 45 minutes before human

operators notice unusual consumption patterns

Predictive maintenance opportunities



Cost Savings Breakdown

Energy Cost Reduction Sources Savings Distribution

Peak Demand Avoidance

42%

Load shifting to off-peak hours

Wasteful Consumption Elimination

® 35%

Identifying and correcting inefficient patterns

- Peak Demand Avoidance

Wasteful Consumption Elimination

HVAC & Lighting Optimization B HVAC & Lighting Optimization

é 23%

Based on predicted production needs

Key Benefits

Rapid ROl within 6-8 months of implementation

Average Total Savings: 23 .4% Reduces carbon footprint by 18%

Improves equipment lifespan through optimized usage



Discussion of Advantages

Key Advantages of Hybrid Al

© Complex Pattern Recognition

Processes 15 variables across 96 timesteps (1,440 data points) for
each prediction

= = Automated Optimization

PSO finds optimal hyperparameters in 35 iterations vs 200+ grid
search

4 Computational Efficiency

Stratified sampling reduces computing needs by 65% while
maintaining accuracy

® Counterintuitive Insights

Discovers patterns that humans miss, such as optimal temperature
ranges for HVAC pre-cooling



Conclusions and Future Work

Key Achievements

Hybrid Al Success

95.7% accuracy outperforming all baseline methods

A Performance Boost

8.2% improvement over standard LSTM

Cost Reduction

23.4% average energy cost savings

Computational Efficiency

@

65% reduction in computing needs through smart sampling

(] o &
Runs on standard .
computers Automated Rapid ROI

optimization

Future Research Directions

I

Multi-objective Optimization

Balancing accuracy, computational cost, and energy efficiency

Ensemble Methods

Combining multiple metaheuristic-optimized models

Real-time Adaptation

Online PSO variants for streaming data

Transfer Learning

Fine-tuning models for new facilities with limited data

Broader Applications

Extending to other manufacturing sectors and industries
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