
SmartEnergy AI
Deep Learning for Real-Time Energy Prediction and Cost Reduction in Manufacturing

Khalid M.O. Nahar, 

Qasem Al-Radaideh, 

Emad M. Al-Shawakfa

Computer Science Department, Faculty of Information Technology and Computer Sciences

Yarmouk University, Irbid, Jordan



The Energy Waste Problem in Manufacturing

Energy Costs in Manufacturing 

Energy accounts for ~25% of manufacturing costs 

Small factories lack tools to track and optimize usage 

Traditional solutions are expensive and ineffective 

The Need for Better Prediction 

Peak demand charges send costs through the roof 

Looking at yesterday's numbers doesn't help plan for tomorrow 

AI can spot patterns humans miss in energy usage 



SmartEnergy AI: System Overview

Hybrid Deep Learning System 

LSTM neural networks for temporal pattern recognition 

PSO optimization for hyperparameter tuning 

GA for feature selection from 23 variables 

Trained on 2.1M 15-minute readings from 24 factories 

95.7%

Prediction Accuracy

23.4%
Cost Reduction

8.2%

Performance Boost

Key Capabilities 

Predicts energy demand up to 24 hours ahead

Identifies wasteful consumption patterns 

Recommends optimized equipment schedules 

Reduces computing needs by 65% through smart sampling 



SmartEnergy AI: Methodology



Methodology Overview

Hybrid Deep Learning Approach 

Energy prediction as sequence learning problem 

LSTM networks capture temporal patterns in energy usage 

PSO optimizes hyperparameters more efficiently than grid search 

GA selects optimal features from 23 candidate variables 

1

Data Collection

2

Model 
Optimization

3

Prediction & 
Analysis

Model Components 

LSTM Architecture: 3 layers (128, 64, 32 neurons) 

PSO Parameters: 20 particles, 50 iterations, w=0.7 

GA Selection: 7 optimal features from 23 candidates 

Training Process: 70% train, 15% validation, 15% test 



Data Collection and Sampling

UCI Steel Industry Dataset 

Detailed industrial energy records from 24 manufacturing plants

Collection period: 3 years (2020-2023) 

Each record: 15-minute snapshot with energy usage, environmental
data, and operational details

Facilities range from 50-500 employees across metal fabrication, food
processing, plastics, and car parts

2.1M
Total Records

35%
Sample Size

65%

Computing Savings

Stratified Random Sampling 

1 Stratification

Dataset divided by facility type, operational shifts, and seasonal 
periods

2 Random Selection

35% of records randomly selected from each stratum using fixed 
seed (seed=42)

3 Validation

Statistical distributions verified using Kolmogorov-Smirnov tests (p > 
0.05)





Model Architecture

LSTM Neural Network

3 stacked layers: 128, 64, 32 neurons 

96 timesteps input sequence (24 hours) 

Predicts next 96 time slots ahead 

Processes 15 input variables across time 

PSO Optimization

Optimizes 5 key hyperparameters

Converged in 35 iterations vs 200+ grid search 

Reduced validation MAPE from 7.2% to 4.1%

Particles

20

Iterations

50

Inertia (w)

0.7

Coefficients

c1=1.5, c2=1.5

GA Feature Selection

Selects from 23 candidate features

Identifies 7 optimal features

Captures 96% of predictive power

Reduces dimensionality while maintaining 
accuracy 

Hybrid Integration

GA Selection PSO Optimization
LSTM 

Training



Experimental Setup

Training Process 

Model learns by comparing predictions to actual consumption 

Adjusts millions of internal parameters via backpropagation

Optimizes to minimize prediction error on validation set 

70%

Training

2020-2021

15%

Validation

Early 2022

15%

Testing

Late 2022-2023

Model Parameters 

Learning Rate

0.001

Batch Size

64

Dropout Rate

0.2

Epochs

100

Data Preprocessing 

Missing Values

Handled using forward-fill interpolation

Normalization

Min-max scaling to [0,1] range

Sequence Generation

Sliding windows for time series input

Input Features 

Total power consumption (historical) 

Outdoor temperature and environmental data 

Production volume and equipment status 

Temporal features: day of week, hour of day 

Holiday indicators and special events 



Results and Performance Comparison

Key Performance Metrics 

95.7%
24-hour Forecast Accuracy

92.3%

Week-ahead Forecast Accuracy

Key Finding 

PSO tune-up boosted LSTM performance by 8.2% over standard setup 

Model Benchmarking 

Simple Moving Average 68.2%

ARIMA 78.4%

Random Forest 86.1%

Standard RNN 88.7%

Baseline LSTM 89.4%

GA-optimized LSTM 93.1%

Our PSO-LSTM Model 95.7% +2.6%

Efficiency Gain 

PSO found optimal configurations in 35 iterations vs 200+ grid search 



Key Findings and Insights

HVAC Optimization Windows

Model identified specific temperature ranges where pre-cooling before 

peak hours reduces overall energy consumption by up to 18%

Counterintuitive: Cooling earlier saves more energy 

Equipment Synergy

Certain equipment combinations operate 23% more efficiently when run 

together versus separately, regardless of production needs 

Non-obvious operational patterns discovered 

Optimal Shift Timing

Starting production shifts 15 minutes earlier on certain days reduces peak 

demand charges by 27% without affecting output 

Small timing adjustments yield significant savings 

Energy Anomaly Detection

Model flags equipment malfunctions up to 45 minutes before human 

operators notice unusual consumption patterns 

Predictive maintenance opportunities 



Cost Savings Breakdown

Energy Cost Reduction Sources 

Peak Demand Avoidance

Load shifting to off-peak hours
42%

Wasteful Consumption Elimination

Identifying and correcting inefficient patterns

35%

HVAC & Lighting Optimization

Based on predicted production needs
23%

Average Total Savings: 23.4%

Savings Distribution 

Key Benefits 

Rapid ROI within 6-8 months of implementation

Reduces carbon footprint by 18%

Improves equipment lifespan through optimized usage



Discussion of Advantages

Key Advantages of Hybrid AI 

Complex Pattern Recognition
Processes 15 variables across 96 timesteps (1,440 data points) for 
each prediction

Automated Optimization
PSO finds optimal hyperparameters in 35 iterations vs 200+ grid 
search

Computational Efficiency
Stratified sampling reduces computing needs by 65% while 
maintaining accuracy

Counterintuitive Insights
Discovers patterns that humans miss, such as optimal temperature 
ranges for HVAC pre-cooling



Conclusions and Future Work

Key Achievements 

Hybrid AI Success

95.7% accuracy outperforming all baseline methods 

Performance Boost

8.2% improvement over standard LSTM 

Cost Reduction

23.4% average energy cost savings 

Computational Efficiency

65% reduction in computing needs through smart sampling 

Runs on standard
computers Automated 

optimization

Rapid ROI

Future Research Directions 

Multi-objective Optimization

Balancing accuracy, computational cost, and energy efficiency

Ensemble Methods

Combining multiple metaheuristic-optimized models

Real-time Adaptation

Online PSO variants for streaming data

Transfer Learning

Fine-tuning models for new facilities with limited data

Broader Applications

Extending to other manufacturing sectors and industries
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