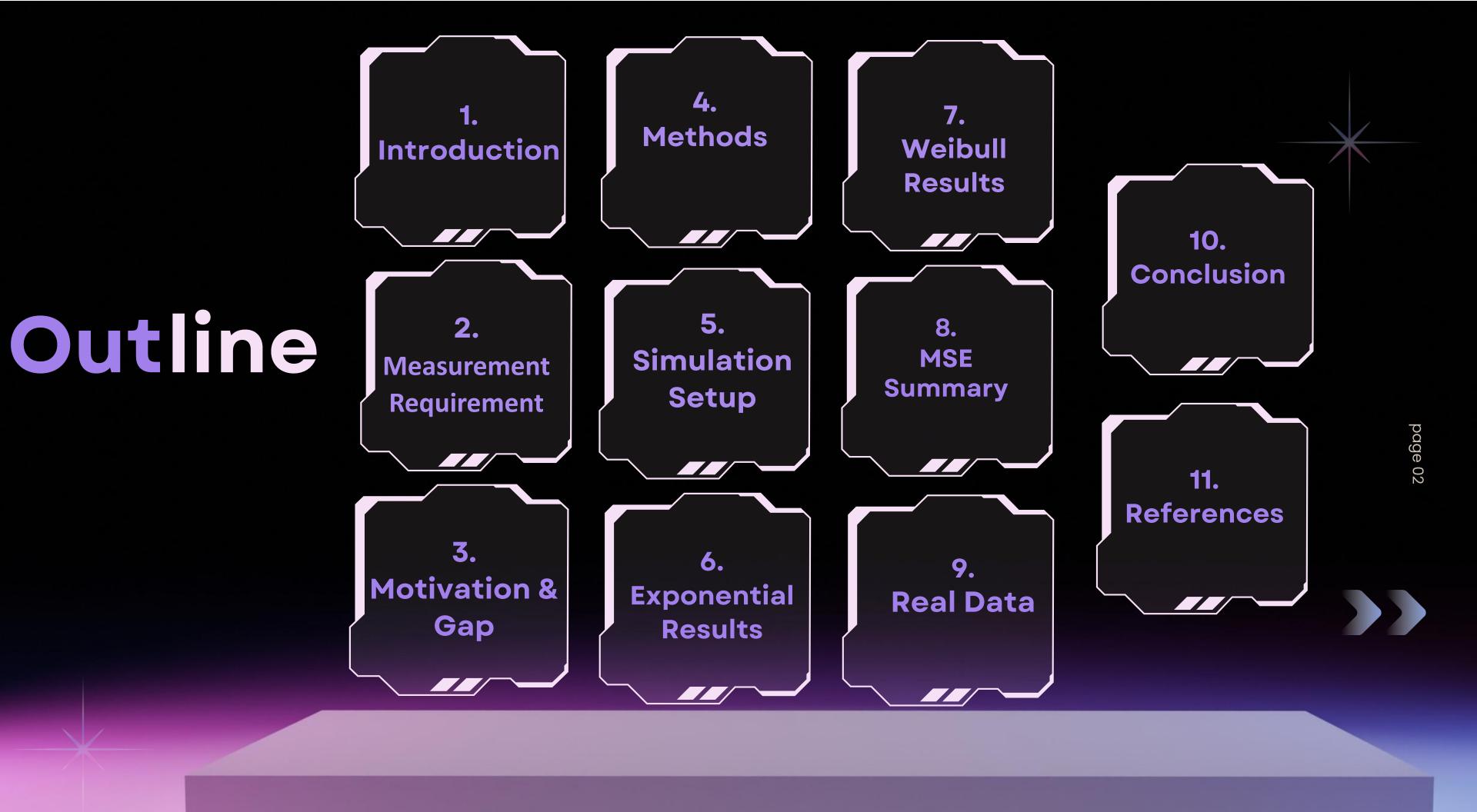
page 01

A COMPARATIVE STUDY OF PARAMETRIC AND


AI-ENHANCED NONPARAMETRIC RELIABILITY

ESTIMATORS IN ONCOLOGY SURVIVAL MODELS

Authors:

Lujain Belal Al-Smadi
Yazan Nazih Ahmad Haj-Hussein
Qusai Saleh Mansour Shakhatreh
Dr. Mohammad Ahmed Orsan Obeidat
Dr. Abdul-Aziz Adnan Chrit

YARMOUK UNIVERSITY
Faculty of Science
Department of Statistics

introduction

Reliability in Medical Context

• R = P(Strength > Stress) R = P(X > Y)

$$R = P(X > Y)$$

X = strength (patient survival time)
 Y = stress (risk / treatment burden)

- Classical in Engineering, Evolving in Medicine
- Al-enhanced survival modeling = better decisions
- **Applications of R:** Engineering: material strength, mechanical failure
 - Medicine: comparing survival time vs treatment burden

Measurement Requirement

X and Y must be in the same unit

Examples:

Time vs Time

Dose vs Dose

Pressure vs Pressure

Motivation & Research Gap

- 1. Classical methods assume specific distributions
- 2. Real survival data violates assumptions
- 3. AI methods add flexibility
- 4. Need a combined hybrid approach

- DeepSurv and several survival AI models cannot run on most Middle Eastern servers
- They require U.S./European GPU-based cloud infrastructure
- Therefore, we used methods that can run locally: RSF (ranger)— GBM–Cox

Methods Overview (Merged)

* Empirical (Classical)

ECDF(X) + Kernel PDF(Y)

RSF (Al, ranger)

Survival trees

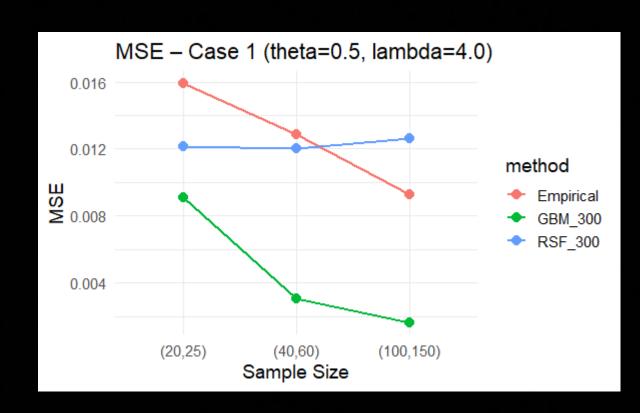
Handles nonlinear patterns

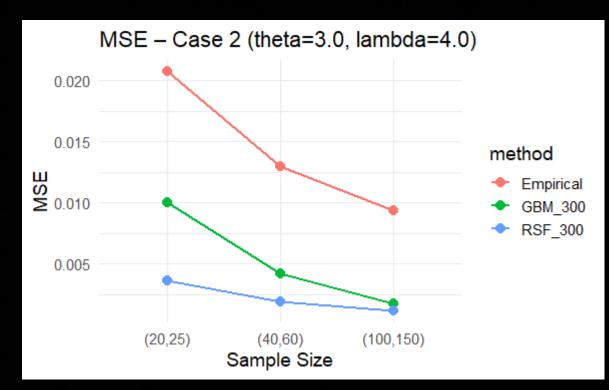
* GBM-Cox (AI)

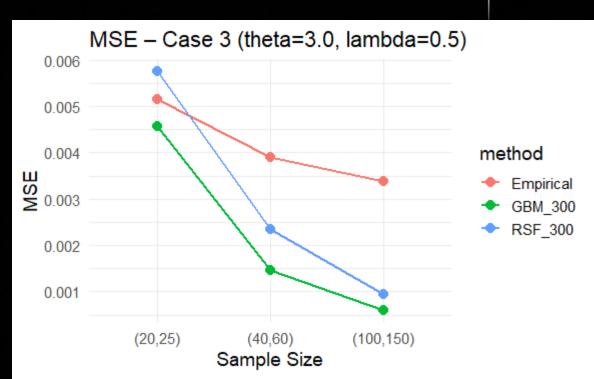
Boosted Cox

Strong predictive performance

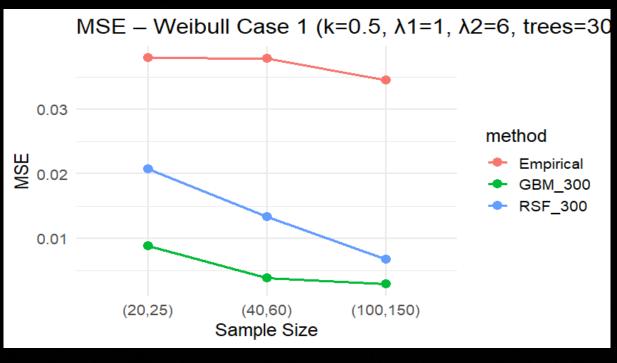
page 0

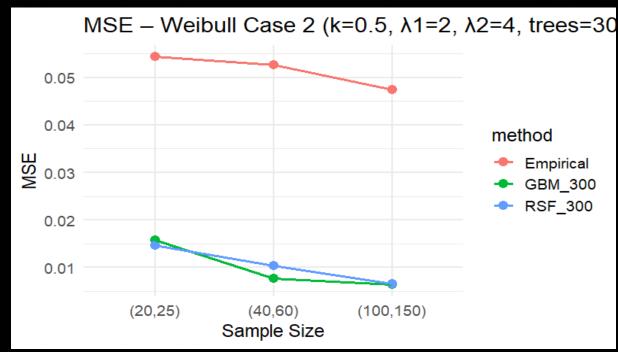

Simulation Setup

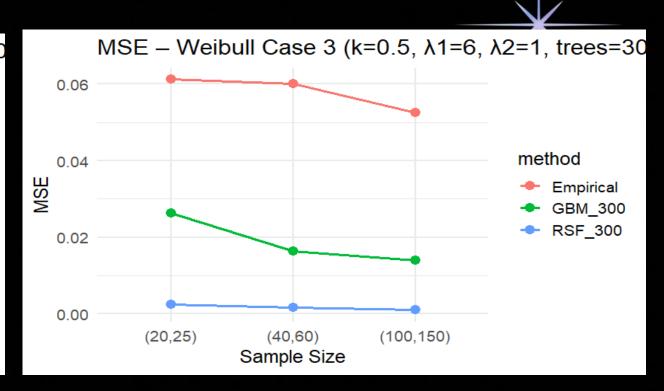

- Distributions: Exponential & Weibull
- Three sample sizes
- Replications: N simulations per case
- AI models use 300 trees
- Evaluation metric: MSE only


page 08

Exponential Results (MSE)




- Empirical = highest MSE
- GBM best in Cases (1 & 3)
- RSF best in Case 2
- MSE ↓ with larger samples



30

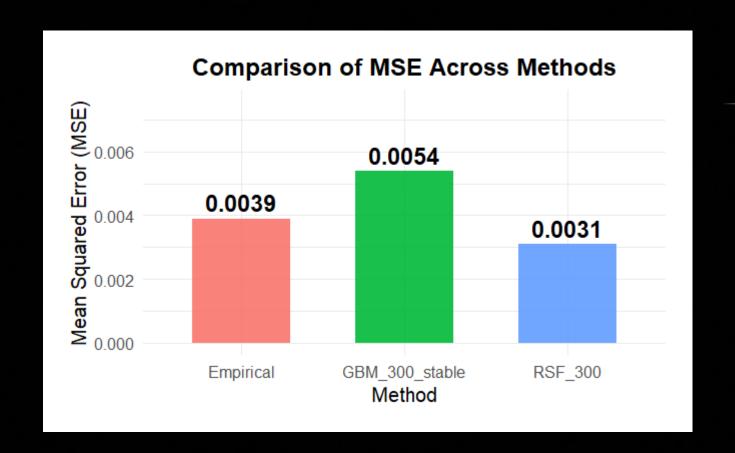
Weibull Results (MSE)

- Empirical = worst
- GBM best in Cases 1 & 2
- RSF best in Case 3

Page 10

Page 10

MSE Summary (Exponential + Weibull)


Model	Case	Empirical MSE	GBM-300 MSE	RSF-300 MSE	Best
Exponential	Case 1 (θ=0.5, λ=4.0)	0.0159 → 0.0093	0.0091 → 0.0016	0.0121 → 0.0126	☆ GBM-300
Exponential	Case 2 (θ=3.0, λ=4.0)	0.0207 → 0.0093	0.0100 → 0.0017	0.0036 → 0.0011	★ RSF-300
Exponential	Case 3 (θ=3.0, λ=0.5)	0.00514 → 0.00337	0.00456 → 0.00059	0.00575 → 0.00095	☆ GBM-300
Weibull (k=0.5)	Case 1 (λ_1 =1, λ_2 =6)	0.035-0.038	0.0029-0.0089	0.0067-0.0207	☆ GBM-300
Weibull (k=0.5)	Case 2 (λ_1 =2, λ_2 =4)	0.047-0.054	0.0063-0.0157	0.0065-0.0147	☆ GBM-300
Weibull (k=0.5)	Case 3 (λ_1 =6, λ_2 =1)	0.052-0.061	0.0139-0.0263	0.00098-0.00248	★ RSF-300

As sample size increases, RSF and GBM-Cox outperform the Empirical method

Real Data & Conuclusion

- Collected manually from King Abdullah University Hospital (KAUH)
- Data extraction completed by: Lujain Al-Smadi
 - Yazan Haj-Hussein
 - Qusai Shakhatreh
- Supervised by: Dr. Hani Taani
 - Dr. Abdul-Aziz Chrit
- X = patient survival time
- Y = treatment burden / disease severity

Method	True R
Empirical	0.3556
GBM_300_stable	0.3788
RSF_300	0.3754

Phase 2: Sampling-Based Evaluation (Bias, MSE, Variance)

Method	R_mean	Bias	MSE	Variance
Empirical	0.3575	0.0019	0.00385	0.00385
GBM_300_stable	0.4022	0.0234	0.00536	0.00482
RSF_300	0.3908	0.0154	0.0031	0.00287

Conclusion

- Al methods outperform the classical Empirical estimator
- GBM–Cox shows the strongest overall performance
- RSF performs best when X and Y distributions differ
- MSE decreases consistently with larger samples
- Al-enhanced survival modeling improves medical decision-making

- Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. Wiley.
- de la Cruz, R., Salinas, H. S., & Meza, C. (2022).

 Reliability estimation for stress—strength model based on unit half normal distribution. Symmetry, 14(4), 837.
- Liao, Y., Pan, X., Zhang, Z., Wang, Y., & Zhang, Y. (2024).

 Random survival forest algorithm for risk stratification and survival prediction in gastric neuroendocrine neoplasms. Scientific Reports, 14, 77988.

THANK YOU!

Any Question?

LUJAINSMADI6@GMAIL.COM